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We present a theoretical model for the cross-plane lattice thermal conductivity calculations in
semiconductor quantum dot superlattices. Based on continuum approximation, our model takes into
account scattering of acoustic phonons on quantum dots. In most practical cases, the dot volume
fraction is relatively small and/or dot and host materials have a small acoustic mismatch. This fact
lets us take into account only first order scattering events and to significantly simplify the
calculations. The results of numerical simulations carried out for Si/Ge quantum dot superlattices
show good agreement with experimental data. The proposed model is useful for many applications
recently suggested for semiconductor quantum-dot superlattices. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1668317#

For the past two decades, semiconductor quantum dot
superlattices~QDS! attract growing interest due to the oppor-
tunity to engineer its electronic properties.1,2 Until recently,
most attention has been focused on possible electronics and
optoelectronics applications.3,4 Recently, there is increased
interest in studying thermal properties in QDS. An intriguing
ability of independent control of electronic and thermal prop-
erties in QDS stimulated a great deal of interests devoted
mainly to possible thermoelectric applications.5 An increase
in thermoelectric figure of merit in QDS is anticipated due to
the modification of its thermal properties in addition to elec-
tronic ones.6 All of this motivates current interest in under-
standing and modeling QDS thermal properties. As bulk of
heat in semiconductors is transported by lattice vibrations,
theoretical efforts are focused on the lattice thermal trans-
port. Rigorous solutions of the problem by direct molecular
dynamic ~MD! techniques7 may be possible in the future
with increased computation power. To date, one must use
approximated models to evaluate lattice thermal conductiv-
ity, taking into account specific properties of QDS, such as
structure and composition.

In this letter, we report a theoretical model of cross-plane
lattice thermal conductivity of semiconductor QDS, appli-
cable for most grown superlattices reported in the
literature.8–10

In the relaxation-time approximation the expression for
the lattice thermal conductivity can be written in an integral
form as11
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whereS(v) is the contribution to the specific heat per fre-
quency interval from lattice wave of frequencyv, ng is the
phonon group velocity, andl (v) is the phonon mean-free-
path. Thermal conductivity arises from phonon relaxation in
different scattering processes, which do not conserve crystal
momentum.11 The mean-free-pathl (v) is used to represent
the combined effect of these processes
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where the first three terms are the most important lengths
associated with the Umklapp, phonon-impurity atoms, and
phonon-boundary scattering mechanisms, respectively. The
calculation procedures for the above processes are known
and can be found elsewhere.11,12

In order to construct a theoretical formalism for QDS,
we have to take into account a new phonon scattering
process—scattering on quantum dots. Thus, we must calcu-
late one more phonon attenuation lengthl D(v)5V/sV

~where sV is the total phonon scattering cross section in
volumeV) and to add it to the sum in Eq.~2!.

As the characteristic size of quantum dots in a superlat-
tice exceeds hundred of nanometers~typically quantum dots
grown in Stranski–Krastanov mode have about 100 nm in
base and 10 nm in height! and thus, each dot may consist of
more than 105 atoms. Since the scale of our interest is much
higher than the inter atom distance, we can apply the con-
tinuum model approximation and treat quantum dots as re-
gions having the density and the sound velocity different
from those in the host matrix~see Fig. 1!. Due to the mis-
match of the acoustic properties, the dots act as scatters to
the propagating lattice waves.a!Electronic mail: ahit@ee.ucla.edu
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The problem of elastic wave propagation in a media con-
taining multiple scatters is known from acoustics and will
not be reproduced here. Following the general approach,13–15

the solution of the wave equation at any pointr can be found
as a sum of the incidentc0 and scatteredcS wavesc(r )
5c in(r )1cS(r ), wherec in(r )5exp(ikr) and

cS~r !5(
j

cS~r ur j !,

summing through all scattered waves. Taking into account
the specific scatter arrangement within spatially ordered lay-
ers ~Fig. 1!, the total scattered field in QDS is found by
summation of scattered waves from all layers.

In order to find the scattered field produced by a single
layer, we apply the generalized result of a classical scattering
theory, the so-called optical theorem16 which gives us the
expression for the total scattering cross section of one layer
with spatially random distributed scatters as follows:

s~ki !52Im, f ~ki ,ki !./k0), ~3!

where ki defines the direction of wave propagation,
^ f (ki ,ki)& is the forward scattering amplitude andk0 is the
wave number whereuki u5k0 . The angular brackets in Eq.
~3! denote the averaging over the ensemble. Our special in-
terest is devoted to theweak scattering densitylimit
un f(ki ,ki)/k0

2u!1, wheref (ki ,ki) is the scattering amplitude
of a single scatter, andn is the scatter density. For many
semiconductor materials, for example, Si and Ge, this limit
takes place in most cases due to the relatively low quantum
dot volume fraction (5%<) and the finite acoustic mismatch
between the host and dot materials (x50.78). In this par-
ticular case, the interaction between different scatters can be
estimated by using themultiple forward scattering approxi-
mation ~MFSA!.17

To find the total forward scattering produced by the en-
semble, only forward scattering from single scatters should
be taken into account while the effect of backward scattering
is a higher order effect and can be neglected. Moreover, the
contribution to the scattered wave is integrated over the first
Fresnel zone only. By definition, the scatters within the first
zone radiate in phase with the background wave field, which
indicates that the precise location of the scatters is of minor
importance. The discrete distribution of the scatters within
the layer can be replaced by a smooth scatter sheet densityn.
In this letter, we use the result obtained in Ref. 17 and write
the explicit form of the transmission coefficientT for the
layer consisting of randomly distributed scatters in the weak
scattering density limit:

T5S 12 i
2pn

k
f ~ki ,ki ! D . ~4!

In the MFSA approximation, the attenuation and dispersion
of the transmitted/scattered waves is relatively insensitive to
the shapes of the scatters as the forward scattering amplitude
is relatively insensitive to the shape of the scatter.18 For any
distribution p(a) in any number of parameters of the scat-
ters, the forward scattering amplitudef (ki ,ki) be replaced
by the averagef̄ (ki ,ki) given by:

f̄ ~ki ,ki !5E dap~a! f ~ki ,ki !;a. ~5!

We carried out test numerical calculations for Si/Ge QDS
and compared the results with experimental data. The experi-
mental data have been obtained for two samples—A and B,
grown by a solid source molecular beam epitaxy~MBE! sys-
tem on Si~100! substrates. The growth started with a 100 nm
Si buffer layer, followed by a quantum dot superlattice layer
which is composed of bilayers in which the Ge layer is
separated by a 20 nm Si spacer layer. Sample A consists of
ten periods of dome-like Ge dots with 114.7 nm base, 15.1
nm height, a dot sheet density 5.93108 dots per cm22, and
a nominal Ge thickness 1.5 nm. Sample B consists of 22
periods of Ge dots with 152.4 nm base, 10.0 nm height, a dot
sheet density 1.43108 dots per cm22, and a nominal Ge
thickness 1.2 nm. Thermal conductivity of the samples was
measured by the differential 3v method.19 The reference
sample used for differential measurement is the same as the
substrate used in the grown samples. In numerical simula-
tions we used the procedure described above. First, we found
the forward scattering amplitude assuming all dots be iden-
tical hemispheres of radiusa, such as 1/3d2H52/3pa3,
whered is the dot base size andH is the dot height. Then,
we calculated reflection coefficient of a single quantum dot
layer. Next, we found the total scattering cross section due to
the scattering on quantum dots by summation of all scattered
waves from all layers. Finally, we substituted the obtained
attenuation length in Eq.~2!. ~The detailed calculations for
other attenuation lengths in silicon can be found, for ex-
ample, in Ref. 20.! The same procedure was repeated for
different phonon frequencies and the lattice thermal conduc-
tivity was found by integration in Eq.~1!. For both samples,
the conditionun f(ki ,ki)/k

2u!1 is well met.
Figure 2 shows experimental data for samples A and B

~plotted with markers! as well as results of numerical simu-

FIG. 1. Quantum dot structure used in simulations. On the left-hand side
there are the cross-plane TEM image and the top view AFM image of the
Si/Ge QDS. The darker regions in TEM image correspond to Ge, while
lighter regions in AFM depict Ge quantum dots. On the right-hand side there
are model pictures used in calculations. The superlattice is treated as a
structure having regions of different acoustic properties~r is the density and
c is the sound velocity!. The scattering from each quantum dot layer is
obtained by integration over the half-period zones. The scattering from all
scatters in a given zone is on average equal in magnitude but opposite in
sign from the contribution of the preceeding zone.
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lation ~solid curves!. The dashed line depicts reference bulk
silicon thermal conductivity. The thermal conductivity is
plotted as a function of temperature. It is clear that the tem-
perature dependence of thermal conductivity trends as well
as absolute values for both samples are in good agreement
with the experimental data. The difference in deviation be-
tween theoretical and experimental data observed for
samples A and B can be attributed to the higher order effects,
as surface roughness, stress distribution in the quantum dot
layer, which were not taken into consideration.

In conclusion, we present this theoretical model allowing
us to estimate the cross-plane lattice thermal conductivity of
semiconductor quantum dot superlattices. The agreement be-
tween the calculated and experimental data confirms our ap-
proach based on the continuum model approximation and the
assumption that the thermal phonon wave can be represented
by a sum of plane waves affected by the scattering on acous-
tically mismatched obstacles. The proposed calculation pro-

cedure is applicable in the most usual cases, where dot vol-
ume fraction is relatively small or dot and host materials
have close acoustic properties.
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FIG. 2. Comparison between theoretical and experimental data. The mark-
ers depict experimental data obtained for SiGe QDS~samples A and B!.
Solid lines depict the results of numerical calculations. The dashed line
depicts reference bulk silicon thermal conductivity.
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