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Semiconductor quantum dot superlattices consisting of arrays of quantum dots have shown
great promise for a variety of device applications, including thermoelectric power gener-
ation and cooling. In this paper we theoretically investigate the effect of long-range order
in a quantum dot array on its in-plane lattice thermal conductivity. It is demonstrated that
the long-range order in a quantum dot array enhances acoustic phonon scattering and, thus
leads to a decrease of its lattice thermal conductivity. The decrease in the ordered quantum
dot array, which acts as aphonon grating, is stronger than that in the disordered one due to
the contribution of thecoherentscattering term. The numerical calculations were carried
out for a structure that consists of multiple layers of Si with layers of ordered Ge quantum
dots separated by wetting layers and spacers.
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1. Introduction

Quantum dot superlattices (QDS) have recently attracted a lot of attention due to their promise for a ver-
ity device applications [1, 2]. Most of the applications envisioned for semiconductor QDS are in the area of
optoelectronics [2, 3]. Quasi zero-dimensional (0D) confinement of electrons and holes with corresponding
modifications of the density of states allows for artificial re-engineering of optoelectronic properties of such
structures. Most recently it was also shown that QDS made of suitable materials can be used for thermoelec-
tric applications [4–6]. Quantum confinement of carriers in QDS adds up to the thermoelectric power, while
the additional decrease of the lattice thermal conductivity due to phonon scattering on quantum dots leads
to an increase of the thermoelectric figure of merit ZT= S2σe/(κ + κe). Here,S is the Seebeck coefficient,
σe is the electric conductivity,κ is the phonon thermal conductivity, andκe is the electronic thermal conduc-
tivity. It was experimentally found that the thermoelectric power factor of Bi-doped PbT quantum dots array
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structure was higher than that of high quality bulk PbTe. The thermoelectric figure of merit of PbSeTe-based
QDS has been shown to be as high as 0.8 at 300 K [6].

These theoretical predictions and preliminary experimental results motivated our present study of thermal
properties of the ordered semiconductor QDS. The acoustic mismatch between materials of a quantum dot
and that of an surrounding medium (wetting layer or spacer) is expected to produce strong phonon scattering
while it does not severely deteriorate electron transport. Thus, QDS may represent a good example of the
‘phonon-blocking electron-transmitting’ structure. We expect QDS thermoelectric properties to be competing
with skutterudite antimonides [7] which have already shown big potential for thermoelectric applications.

Continuous progress in fabrication techniques based on molecular beam epitaxy (MBE) makes possible
synthesis of highly ordered arrays of semiconductor quantum dots with both in-plane and vertical correla-
tions [8, 9]. As the size of quantum dots and the inter-dot distance continue to decrease and become smaller
than the acoustic phonon mean-free-path3, approaching the dominant phonon wavelengthλth, the long-
range order in quantum dot arrays may significantly alter the phonon transport (3 = 41 nm atT = 300 K
for Si in the Debye approximation and 260 nm in the kinetic theory taking into account the dispersion of
phonons [10]). The presence of highly ordered quantum dots may lead to thecoherentphonon scattering,
which significantly enhances the phonon relaxation rate and modifies the phonon group velocity. This paper
examines the effects of the long-range order in detail. The rest of the paper is organized as follows. In the
next section we describe our theoretical model. In Section3 we present results of our numerical simulations
for a prototype SiGe QDS structure made out of highly ordered arrays of Ge quantum dots separated by Si
spacer layers. Our conclusions are given in Section4.

2. Theoretical model

The expression for the lattice thermal conductivity in the relaxation-time approximation can be written
as [11, 12]

κ =
1

3

∑
i
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dkν2

gi
(k)τCi (k)Si (k) (1)

where i denotes particular phonon polarization branch,νgi is the phonon group velocity associated with
the i th branch,τC is the combined relaxation time,Si (k)dk is the contribution to the specific heat from
modes of the polarization branchi in the phonon wavevector interval ofkdk. The combined relaxation time
τC includes all relaxation rates corresponding to the different scattering processes, which do not conserve
crystal momentum [12]
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Here, 1/τU is the three-phonon Umklapp processes, 1/τM is the phonon-point defect scattering (isotopes,
impurities, etc.), 1/τB in the phonon-boundary scattering, and 1/τD is the phonon scattering by the quantum
dots [4]. Equation (2) includes the phonon relaxation processes, which are dominant in Si, Ge, and SixGe1−x

Structures. The expressions for phonon relaxation rates 1/τU , 1/τM , and 1/τB have been derived by Klemens
and can be found in Ref. [12].

The new term, which we added 1/τD, will be treated here in detail. The most general expression for the
phonon scattering rate on quantum dots can be written as

1

τD
=
νgσv

V
(3)

whereσV is the total cross section of the dot ensemble of volumeV . Due to the fact that the characteristic fea-
ture size of a quantum dot is smaller than the phonon mean-free-path and approaches the phonon coherency
length(L ∼ 2 nm [10]), the phonon relaxation on quantum dots has to be considered as a separate scattering
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Fig. 1.Schematic view of the SiGe quantum dot superlattice (QDS).

process. In this work we treat all dots as equal regimented semi-spheres with radiusa on a plane, which
is perpendicular to the growth direction, as shown in Fig.1. The spacer layer is assumed to be rather thick
(∼100 nm) so that we may disregard phonon spatial confinement effects. To describe the phonon transport in
QDS, we use the continuum model approximation and an assumption that the thermal phonon wave can be
represented by a sum of plane waves [4]. Thus, the expression for the scattering cross sectionσ of a single
quantum dot becomes [13]

σ =
π

k2

∞∑
m=0

(2m+ 1)|1+ Rm|
2. (4)

HereRm is a reflection coefficient

Rm =
h′∗m(ka)+ iβh∗m(ka)

h′m(ka)+ iβhm(ka)
(5)

whereβ = i ρC
ρeCe

[
j ′m(ka)
j ′m(kea)

]
, ρ is the density,c is the sound velocity, the subscripte denote the parameter of
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Fig. 2. In-plane lattice thermal conductivity of the SiGe quantum dot superlattice based on theorderedquantum dot arrays (solid line),
and on thedisorderedquantum dot arrays (dashed line) as functions of the volume fraction of quantum dots. The results are shown for
a = 6 nm, andT = 300 K.

the dot material,hm(ka) = jm(ka) + iym(ka), j and y are the spherical Bessel functions of the first and
second kinds, respectively, andh∗m is the complex conjugate. In the long-wave and short-wave limits, eqn (4)
simplifies toσ ∼ 5.6(ka)4a2 for ka� 1; andσ ∼ 2πa2 for ka� 1, respectively. One can see from these
limits that the phonon scattering on the quantum dots is an intermediate process between the point defect and
the boundary scatterings. A quantum dot acts as an impurity atom in one limit if the dot size is much less
than the phonon wavelength. In the other limit, when the dot size is much larger than the phonon wavelength,
a quantum dot acts as an additional boundary.

In order to findσV , we have to sum the contributions from all scattered waves from all the dots. At some
arbitrary pointP (see Fig.1) the reflected amplitudeS normalized to the amplitude of the incident plane
wave is given as

S=
|F(ϑ)|2

r 2

[
N +

∑
n6=m

e(iu
∗rnm)

]
(6)

where the scattering functionF(ϑ) is

F(ϑ) =
i

2k

∞∑
n

(2n+ 1)(1+ Rn)Pn(cosϑ) (7)

andPn(cosϑ) are Legendre polynomials, whereu = k0 − k, k andk0 are the wavevectors of the plane and
scattered waves (see Fig.1). The sum in eqn (6) is split into two terms[

N +
∑
n6=m

e(iu
∗rnm)

]
. (8)
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Fig. 3. In-plane lattice thermal conductivity as a function of temperature for the Si/Ge QDS based on the ordered quantum dot arrays
(solid line), on the disordered quantum dot arrays (dashed line), and for bulk Si (dotted line). The results are shown forδ = 0.1,
a = 6 nm, andT = 300 K. The bulk Si thermal conductivity result is after Balandin and Wang [16].

The first term on the right-hand side of eqn (8) is the number of dots in volumeV and represents the scattering
of phonons from quantum dots when they act as independent scattering centers. We refer this to theincoherent
scattering term. The second term on the right-hand side of the eqn (8) represents the cooperative scattering
action of the quantum dots. We refer this to thecoherentscattering term, in analogy with the terminology
adopted in acoustics [13].

It is important to note that if the dots are randomly distributed, and the total reflected intensity is small in
comparison with the incident one, the coherent term in eqn (8) vanishes. In this case, the total scattering cross
section of the quantum dots can be approximated by a scattered cross section sum of single dotsσv ≈ Nσ .
In the case of regimented quantum dots, which is equivalent to the in-plane long-range ordering for our
structure, the intensity of the scattered waves will add in some directions, thus generating diffraction beams.
As a result, the quantum dot superlattice will act as aphonon grating. The angle distribution of the diffracted
beams will be determined by the periods(l1, l2) of the in-plane quantum dot distribution (see Fig.1).

In this paper we restrict our analysis to the effect due to the case of regimented QDS, in terms of the
coherent scattering term, on the in-plane lattice thermal conductivity of QDS. The integrated effect of the
coherent term in the long-wavelength limit will manifest itself via a particular dependence of the scattered
intensity on the number of quantum dots. It can be shown [13] that the scattered intensity is proportional
to thesquareof the number of the scattering centers per unit volumeV . Thus, for the ordered quantum dot
array, we haveσV ∼ N2, while for the disordered quantum dot array,σV ∼ N (see eqn (8)). Thisquadratic
dependence of the scattering cross sectionσV on the number of quantum dots may increase the relaxation of
the acoustic phonons, which help carry most of heat in such technologically important semiconductors as Si,
Ge and SiGe.
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In the forward direction the increased phonon scattering modifies the phonon dispersion in such a way
that acoustic phonons travel with a group velocity different from the one in bulk. The problem of the wave
dispersion in a medium containing a number of scatters has been intensively studied for a long time [14, 15].
In this work we adopt an expression for the modification of the wavenumberk due to scattering derived by
Lax [15], (

k′

k

)2

= 1+
4πζ F(0)

V k2
(9)

wherek′ is the wavenumber in the presence of quantum dots,k is the wavenumber in the absence of the
dots,ζ is the constant expressing the ratio of the exciting field to the total fieldζ = Ftotal/F(0) [15], F(0)
corresponds to the forward scattering. This formula was derived under assumption that the concentration
of quantum dots(N/V) is low, so that the influence of the backward scattering, which is proportional to
(N/V)2, can be ignored. For the randomly distributed quantum dots, under the assumption of weak scatter-
ing, we haveζ = 1. For the ordered quantum dot array, the parameterζ becomes proportional toN [15].
The latter can be explained in terms of the coherent and incoherent scatterings. Thus the phonon modifica-
tion, caused by the scattering on dots, results in a decrease in phonon group velocityυg = |∂ω/∂q′|. Since
the acoustic phonon relaxation rate strongly depends on the phonon group velocity [16, 17], one can expect
a strong modification of the lattice thermal conductivity in the regimented quantum dot arrays. Additional
decrease of the acoustic phonon group velocity may come from the spatial confinement of phonon modes
inside the two-dimensional spacer and wetting layers of QDS [16]. But as it was mentioned earlier, we re-
strict our analysis to the QDS with rather wide Si spacer layers so that we neglect the influence of phonon
confinement and only consider modification of the group velocity due to scattering on regimented quantum
dots, e.g. phonon grating.

3. Results and discussion

Numerical calculations have been carried out for SiGe QDS with the spacer layer of 100 nm at temperature
300 K anda = 6 nm (ρ = 2.33× 103 kg m−3, c = 8.47× 105 cm s−1, ρe = 5.32× 103 kg m−3 and
ce = 4.52× 105 cm s−1). The calculation procedure runs as follows. First, we calculated the scattering
function using eqn (7), the reflection coefficient using eqn (5) and the scattering cross section of a single
quantum dot (eqn (4)). Second, using eqn (9), the phonon dispersion and modified phonon group velocity
were found. Next, we calculated the phonon relaxation rates and the lattice thermal conductivityκ (eqn (1)).
The overall procedure of calculation of the in-plane lattice thermal conductivity was analogous to the previous
reported by us for the case of quantum wells [16, 17] and quantum wires [18].

Figure2 presents the results of numerical calculations of the in-plane lattice thermal conductivity of SiGe
QDS as a function of the volume fraction of Ge quantum dots. The dashed line depicts the in-plane lattice
conductivity of SiGe QDS with randomly distributed quantum dots, while the solid line shows the thermal
conductivity of the ordered quantum dot array. The difference of thermal conductivity is caused by the ad-
ditional coherentterm, which is responsible for the enhancement of the acoustic phonons scattering in the
orderedQDS. As it seen in Fig.2, the difference becomes significant as the dot volume fraction (number of
quantum dots per unit volume) increases to about 0.06. At the volume fraction of 0.1, the decrease is about
30% of the value of the in-plane thermal conductivity of therandomquantum dot array. It is interesting to
note that the onset of deviation of the thermal conductivity of the ordered array from that of the random dot
array starts at the volume fraction of about 0.05, which approximately corresponds to the inter-dot distance
equal to the dot diameter.

In Fig. 3, we present the in-plane lattice thermal conductivity of the SiGe QDS as a function of tempera-
ture (up to 700 K). The results are presented for the ordered quantum dot array (solid line) and disordered
quantum dot array (dashed line). For comparison, the Si bulk thermal conductivity is also shown by the dot-
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ted line. These results are for the particular case withδ = 0.1, a = 0.6 nm, l1 = 8a and l2 = 6a. It is
interesting to note that the difference in the lattice thermal conductivity for theorderedanddisorderedarrays
remains significant in a wide temperature range. The latter is particularly important for thermoelectric appli-
cations since SiGe bulk alloys and low-dimensional structures have been shown to be good high-temperature
thermoelectric [19].

4. Conclusions

We have theoretically investigated the in-plane lattice thermal conductivity of the ordered arrays of quan-
tum dots. It was shown that the long-range ordering of the quantum dot array enhanced acoustic phonon
scattering and, thus led to a decrease of its lattice thermal conductivity. The decrease in the ordered quantum
dot array was stronger than that in the disordered one due to the contribution of thecoherentscattering term.
For some realistic Si/Ge quantum dot array parameters, we found that the regimentation of the quantum dots
might lead to an additional decrease of the lattice thermal conductivity (30% for the quantum dot volume
fractionδ = 0.1). This decrease was caused by the coherent acoustic phonons scattering. The strength of this
effect depended on the volume fraction occupied by the quantum dots and the acoustic mismatch between
the material of quantum dots and the spacer layer. The obtained results are important for recently suggested
high-temperature thermoelectric applications of the QDS that consist of theorderedquantum dot arrays.
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