Experimental proof-of-principle investigation of enhanced $Z_{3D}T$ in (001) oriented Si/Ge superlattices

T. Koga

Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

S. B. Cronin and M. S. Dresselhaus

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

J. L. Liu and K. L. Wang

Electrical Engineering Department, UCLA, Los Angeles, CA 90095-1597

(Received 16 June 2000; accepted for publication 7 July 2000)

An experimental proof-of-principle of an enhanced $Z_{3D}T$ (thermoelectric figure of merit) is demonstrated using (001) oriented Si/Ge superlattices. The highest value of the experimental $Z_{3D}T$ at 300 K for a (001) oriented Si(20 Å)/Ge(20 Å) superlattice is 0.1 using $\kappa = 5 \text{Wm}^{-1}\text{K}^{-1}$, for the in-plane thermal conductivity, which is a factor of seven enhancement relative to the estimated value of $Z_{3D}T = 0.014$ for bulk Si. The good agreement between experiment and theory validates our modeling approach (denoted as "carrier pocket engineering") to design superlattices with enhanced values of $Z_{3D}T$. Proposals are made to enhance the experimental values of $Z_{3D}T$ for Si/Ge superlattices even further. © 2000 American Institute of Physics.

The use of low-dimensional structures, as realized in the form of two-dimensional (2D) quantum wells and one-dimensional (1D) quantum wires, has been shown to provide a promising strategy for designing materials with a large value of the thermoelectric figure of merit ZT. The original predictions of enhanced ZT for isolated quantum wells and/or wires (denoted by $Z_{2D}T$ and $Z_{1D}T$, respectively) used a simple model based on the constant relaxation time approximation (CRTA). Although the predictions of enhanced $Z_{2D}T$s within the quantum wells were experimentally verified using the (111) oriented PbTe/Pb$_{1-x}$Eu$_x$Te multiple quantum well (MQW) and Si/SiGe superlattice (SL) systems utilizing very thick barriers to isolate the neighboring quantum wells electrically, the main efforts in this research area are now shifted toward enhancing the value of $Z_{3D}T$, which denotes the thermoelectric figure of merit for the whole three-dimensional (3D) superlattice.

Recently, a general optimization approach to maximize the value of $Z_{3D}T$ using the superlattice structures, as denoted by the term "carrier pocket engineering," was proposed, whereby the structures and geometries of a given superlattice system are optimized in such a way that the optimized structure maximizes the values of $Z_{3D}T$. The use of unconventional X and L valleys was proposed for the GaAs/AlAs superlattice system, and $Z_{3D}T = 0.4$ was predicted for both (001) and (111) oriented GaAs(20 Å)/AlAs(20 Å) SLs at 300 K. For Si/Ge SLs, yet another new concept, that of lattice strain engineering, was proposed using strain-nonsymmetrized SLs, where $Z_{3D}T = 0.78$ and 1.25 are predicted for a (001) oriented Si(20 Å)/Ge(20 Å) SL and for a (111) oriented Si(15 Å)/Ge(40 Å) SL, respectively, at 300 K. However, with the current molecular beam epitaxy (MBE) technology, it is not possible to grow strain-nonsymmetrized SLs with satisfactory structural qualities for thermoelectric applications. The values of $Z_{3D}T$ for strain-symmetrized (001) and (111) oriented Si(20 Å)/Ge(20 Å) SLs are predicted to be 0.24 and 0.96 at 300 K, respectively, using a simple model based on the constant relaxation time approximation (CRTA).

In this letter, the experimental proof-of-principle study of the enhanced values of $Z_{3D}T$ is presented using MBE-grown strain-symmetrized Si(20 Å)/Ge(20 Å) SLs. The growth direction for all the superlattice samples used in the present study is the (001) direction, since the optimization of the growth conditions for the (111) oriented strain-symmetrized Si/Ge SLs has not been carried out yet.

The growth of the (001) oriented Si(20 Å)/Ge(20 Å) superlattices used in the present study are briefly described as follows. Typically, 100 periods of alternating layers of Si(20 Å) and Ge(20 Å) were grown on top of a 0.3–0.5-μm-thick Si$_{0.5}$Ge$_{0.5}$ undoped buffer layer. This undoped buffer layer was, in turn, grown on a 1–2-μm-thick Si$_{1-x}$Ge$_x$ (x = 0.5) graded buffer layer using antimony as a surfactant (surfactant-mediated growth). The Si$_{1-x}$Ge$_x$ graded buffer layers were grown both on a slightly p-type doped (001) Si substrate (samples JL167 and JL169) and on a (001) oriented Si-on-insulator (SOI) substrate (samples JL193, JL194, JL197, and JL199). The reason why we use SOI substrates in addition to (001) Si substrates is to avoid a large contribution of the phonon drag effect from the Si substrate to the measured Seebeck coefficient S below 200 K that masks the contribution to S from the superlattice part of the sample. Shown in Fig. 1(a) are the experimentally measured Seebeck coefficient (as-measured values are plotted using open circles) as a function of the Hall carrier concentration (n_{Hall}) at 300 K for the (001) oriented Si(20 Å)/Ge(20 Å) superlattice samples. In the present work, we assume that n_{Hall} is not.
the parallel transport contribution from the Si1
attributed to the superlattice part of the sample only, due to
unity in this case. 23,25 It is found, in Fig. 1~
the Seebeck coefficient are significantly
term in Eq. 5
and the geometric factor to convert
function of carrier concentration

to that predicted by the
CRTA and experiment (as-measured S) [see (2) above], we
have employed a simple parallel-conductor model to subtract
the buffer layer contribution to the measured S [denoted by
S(bufl)] from the as-measured values for [S] [denoted by
S(a.s)] to evaluate the net contribution to the measured S
for the superlattice part of the sample only [denoted by
S(SL)]
also included.23 We use the Matthiessen’s rule
\[
\frac{1}{\tau_{\text{ext}}(E)} = \frac{1}{\tau_{\text{imp}}(E)} + \frac{1}{\tau_{\text{ac}}(E)} + \frac{1}{\tau_{\text{ext}}}
\]
(1)
to include the scattering mechanisms that are extrinsic to the
properties of the ideal strain-symmetrized Si/Ge superlat-
tives. These scattering mechanisms (denoted by \(\tau_{\text{ext}}\)) include
scattering due to the interface roughness and that due to the
structural defects and dislocations. It is also noted that the
values for \(\tau_{\text{imp}}(E)\) (associated with ionized impurity scat-
rering) and \(\tau_{\text{ac}}(E)\) (associated with longitudinal acoustic pho-
non deformation potential scattering) are calculated without
the use of any fitting parameters by solving the Boltzmann
equation using the literature values for the band parameters
of bulk Si and Ge,23 whereas the value for \(\tau_{\text{ext}}\) is obtained by
fitting the experimental results for the carrier mobility for the
superlattice samples as a function of carrier concentration
at 300 K as shown in Fig. 1(b). The predicted values for \(\tau_{\text{ext}}\)
thus obtained are plotted by the solid curve in Fig. 1(a). To
resolve the second reason for the discrepancy between theory
and experiment (CRTA) and experiment (as-measured S) [see (2) above],
we have employed a simple parallel-conductor model to subtract
the buffer layer contribution to the measured S [denoted by
S(bufl)] from the as-measured values for [S] [denoted by
S(a.s)] to evaluate the net contribution to the measured S
for the superlattice part of the sample only [denoted by
S(SL)]
\[
S^{(SL)} = \frac{S^{(a.s)} - S^{(bufl)}}{\sigma^{(a.s)} - \sigma^{(bufl)}},
\]
(2)
where \(\sigma^{(a.s)}\) and \(\sigma^{(bufl)}\) are, respectively, the electrical sheet
conductivity (electrical conductance per unit area) for the
superlattice samples, including the buffer layer contribution
and that for the bare buffer layer sample (a sample with only
the buffer layers that are identical with those used for the
growth of the samples JL193, JL194, JL197, and JL199).
The net values of the Seebeck coefficient for the superlattice
part of the sample thus obtained are plotted using the filled
circles in Fig. 1(a). It is noted that the subtraction of
the buffer layer contribution to estimate the values of \(S^{(SL)}\) was
not able to be carried out for samples JL167 and JL169,
since the transport properties of the bare buffer samples for
these superlattices [the Si1-xGe x buffer layers grown on
(001) Si substrates directly] were not measurable due to their
large impedances.

Shown in Fig. 2 is the experimentally determined ther-
moelectric power factor \(S^2\sigma\) after subtracting the buffer layer
contributions as discussed earlier (filled circles), to-
gether with the results of the theoretical predictions, as a
function of carrier concentration \(n\) at 300 K. It is noted that
the theoretical values for \(S^2\sigma\) using the improved theoretical
models discussed earlier without including the \(1/\tau_{\text{ext}}\) term are
plotted using the solid curve, whereas those obtained includ-
ing the \(1/\tau_{\text{ext}}\) term in the Matthiessen’s rule are plotted using
the dash-dotted curve. The former (solid curve) of the theo-
retical results for \(S^2\sigma\) is considered to represent the intrinsic
properties of the homogeneously doped (001) oriented Si(20
Å)/Ge(20 Å) SLs, where the extrinsic mechanisms for scat-
terting carriers, such as the scattering due to the interface roughness and/or due to the structural defects or dislocations, are absent. Therefore, the experimental values for $S^2\sigma$ for the (001) oriented Si/Ge superlattice samples obtained in this study ($S^2\sigma<16\mu W cm^{-1}K^{-2}$) can be expected to increase further (by a factor of up to 2–3) by improving the structural quality of the superlattices ($S^2\sigma\approx 36\mu W cm^{-1}K^{-2}$). It is also noted that the values of $S^2\sigma$ are predicted to increase even further ($S^2\sigma>36\mu W cm^{-1}K^{-2}$) by introducing the δ- and modulation-doping schemes in (001) oriented Si/Ge SLs.

To make an order of magnitude estimation for the value of the experimental $Z_{3D}T$, we attach an additional scale for $Z_{3D}T$ on the right hand side of Fig. 2, using a constant value of $k_1=5 W/m K$ for the in-plane (parallel to the planes of the superlattices) thermal conductivity for the pertinent SLs. This value for $k_1 (5 W/m K)$ is chosen considering the fact that the experimentally determined values for the crossplane (along the direction perpendicular to the superlattice planes) thermal conductivity (denoted by k_1) are in the range between 1 and 2 W/m K for samples JL194, JL197, and JL199, whereas the most conservative estimation for the value of k_1 using the Si/Ge superlattice sample that has the smallest dislocation density (sample JL156) turns out to be $k_1=12 W/m K$ at 300 K using the models proposed by Chen. In Fig. 2, we indeed see a several fold enhancement in the measured values of $Z_{3D}T (~0.08)$ in these (001) oriented Si(20 Å)/Ge(20 Å) SL samples relative to the corresponding value for $Z_{3D}T$ for bulk Si ($Z_{3D}T \approx 0.014$), and the values of $Z_{3D}T$ for these SLs are expected to be increased further by improving the structural quality of the superlattices as discussed above.

In summary, an experimental proof-of-principle study of an enhanced thermoelectric figure of merit $Z_{3D}T$ has been carried out using (001) oriented Si/Ge superlattices to test the reliability of our modeling approach denoted by the carrier pocket engineering concept. We find that the experimental values of $Z_{3D}T$ for (001) oriented Si(20 Å)/Ge(20 Å) superlattices are as high as 0.1 at 300 K, which is about a seven-fold enhancement relative to the corresponding value for bulk Si ($Z_{3D}T = 0.014$). The successful experimental proof-of-principle study of enhanced $Z_{3D}T$ using the (001) oriented Si(20 Å)/Ge(20 Å) superlattices suggests that practically useful values of $Z_{3D}T$ ($Z_{3D}T \approx 1$) that are predicted for (111) oriented Si/Ge SLs are also realizable in experiments. In addition, it is expected that the introduction of the δ- and modulation-doping schemes would increase the values of $Z_{3D}T$ for (111) oriented Si/Ge SLs even further, looking to a value of $Z_{3D}T \approx 2$ at 300 K.

The authors would like to thank Professor G. Chen, T. Borca-Tasciuc, and Dr. G. Dresselhaus for valuable discussions. The authors gratefully acknowledge support from ONR under MURI Subcontract No. 205-G-7A114-01 and the U.S. Navy under Contract No. N00167-98-K-0024.