Full length article

Large-area adlayer-free single-layer h-BN film achieved by controlling intercalation growth

Yanwei Hea,1, Hao Tianb,1, Alireza Khanakia, Wenhao Shic, Jason Tranb, Zhenjun Cuia, Peng Weib, Jianlin Liua

a Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA
b Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA

A R T I C L E I N F O

Keywords:
Hexagonal boron nitride (h-BN)
Molecular beam epitaxy (MBE)
Intercalation
Two-dimensional (2D)
Single- and multi-layer

A B S T R A C T

Controllable wafer-scale growth is one of the ultimate goals in two-dimensional (2D) h-BN synthesis, which is not fully accomplished to date. One of critical issues is the formation of three-dimensional (3D) islands (adlayers) within 2D layers, thus the films are non-uniform in thickness. In this paper, we present a study of h-BN adlayer growth and provide a strategy towards eliminating these adlayers for the precise control of the number of 2D layers. By varying the growth parameters such as substrate property, nitrogen source composition, and substrate carburization time, we found that the adlayer growth can be controlled by controlling the nucleation and intercalation processes, which is achieved by engineering the defects and impurities on substrate and the activeness of the h-BN edges. While crystallographic defects and impurities stimulate the multilayer nucleation process, activated edge tends to turn off the intercalation process by reducing the probability of precursors penetrating into the interface. We have achieved the growth of a large-area adlayer-free single-layer h-BN film.

1. Introduction

Since the isolation of single-layer graphene in 2004 [1], 2D materials have been intensively investigated, resulting in many novel devices that have unparalleled performances [2–6]. Many of these applications require precise control of film thickness. For example, single layer film may act as perfect encapsulation or insulation for other 2D materials, while multilayer film is used as excellent tunneling barrier or robust field-effect dielectric for tunneling devices and transistors, respectively. Further accurate control of the number of atomic layers in vertical heterostructures also potentially maximizes the performance of the devices based on these structures. However, while progress has been made in the scalable growth on several catalyst metal substrates [7–13], the precise control of its thickness has remained a great challenge. Non-uniform adlayers in h-BN growth are frequently observed, which compromise the uniformity and flatness of films. Thus, understanding of the formation of adlayers can provide insight into the growth of uniform 2D layers. Specifically, single-layer film can be achieved if adlayer growth is eliminated. In contrast, large multilayer film can be achieved if each layer of the adlayer seeds can grow uniformly in the lateral direction.

To date, the growth mechanism of adlayers remains elusive. One proposed mechanism suggests that sequential layers grow on top of existing layers with an assistance of defective nucleation sites [14], while others suggest that sequential layers grow underneath through intercalation [15] or precipitation [16]. Similar debate exists in graphene growth for a long time. Some propose that sequential graphene layers grown on top originate from multilayer seed [17]. For example, Kidambi et al. reported on-top growth mechanisms by using hydrogen etching [15]. On the other hand, Li et al. demonstrated that the second layer grows underneath the first layer on Cu foil by carbon isotope labeling [18]. Also in graphene/h-BN heterostructure growth, intercalation growth of graphene under h-BN cover on Ni substrate was directly observed by in situ low-energy electron microscope (LEEM) [19]. On the other hand, direct growth of graphene on exfoliated h-BN was also achieved under an extremely high growth temperature of 1850 °C [20]. Thus, whether sequential layers grow on top or from bottom depends on the growth conditions and techniques used.

2D h-BN layers are synthesized using various methods such as atomic layer deposition (ALD) [21–23], chemical vapor deposition (CVD) [10,16,24–28], and molecular beam epitaxy (MBE) [29–36]. Each one has its own merits. For example, the ALD technique can
produce h-BN films with relatively high quality at low growth temperature. Low-temperature process is important for some device applications. CVD process usually requires high temperature to decompose gaseous sources, but it is relatively simple, thus perhaps it is the most popular method. As an alternative, MBE is versatile for the synthesis of 2D h-BN due to its great controllability of growth parameters and in situ atomic-layer monitoring technique such as reflection high-energy electron diffraction (RHEED). In our recent paper regarding the MBE growth of 2D h-BN films on carburized Co and Ni substrates, we demonstrated that subsurface carbon interstitials enhance the adsorption and diffusion of B and N atoms on the surface for promoting the h-BN growth [37]. Here, we focus on a study of the growth of h-BN adlayers. We used two different nitrogen sources, namely nitrogen plasma and ammonia to study the influence of hydrogen atoms; used polycrystalline Co, polycrystalline Ni, and single crystalline Ni substrates to study the influence of substrate crystallographic defects; and used different substrate carburization time to study the interstitial carbon effect. The samples were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). By optimizing these growth parameters, we achieved the growth of a large-area adlayer-free single-layer h-BN film, and thus this study provides a strategy towards uniform h-BN 2D film growth.

2. Methods

A Perkin-Elmer MBE system with a background pressure of ~10⁻⁹ Torr was used for the sample growth. Boron was supplied by a Knudsen effusion cell filled with B₂O₃ powder (Alfa Aesar, 99.999% purity), which is heated up to around 1150 °C. Nitrogen plasma was produced by introducing nitrogen gas (Airgas, 99.9999% purity) into a plasma cell temperature, and the same 10-sccm ammonia. Fig. 1(v) shows SEM images of samples grown with different source flux rates also have influence on the growth of adlayers. Fig. 1(iv) shows SEM images of samples grown with different B₂O₃ effusion cell temperature and the same 10-sccm ammonia. Fig. 1(iii) shows SEM images of samples grown with different ammonia flux and the same B₂O₃ effusion cell temperature of 1150 °C. As can be seen, increasing the source flux rate of either boron or nitrogen results in larger coverage at the same growth duration, which indicates larger growth speed. Meanwhile, adlayers appear in all samples, and their density increases with the increase of source flux rate.

Before discussing how these three factors influence the morphology of adlayers, we briefly discuss how the adlayers may have been formed in our case, namely, whether the adlayers are formed by growing sequential layers from top of or underneath existing layers. In general, growth without metal surface catalysis requires extreme growth conditions, such as high partial pressure (e.g. ambient pressure) [39], high temperature [20,40,41], or special technique [42] to overcome the activation barrier, and the resulted films often have low coverage and uniformity [43]. On the other hand, direct growth on transition metal surface can be achieved at much lower temperature with higher coverage due to a reduced activation barrier by catalytic effect. Since the growth temperature we used is very low (900 °C), it is unlikely to trigger the growth of h-BN on top of the non-catalyzing surface. Till now, two growth mechanisms were reported for the growth-from-below scenario, namely, precipitation (or segregation) and intercalation. Precipitation growth refers to the segregation of source atoms from catalyst substrate, which requires a large solubility of precursor [44–47] and a tendency to form metastable carbide (for graphene growth) [48,49]. On the other hand, intercalation growth is caused by the diffusion of source atoms into the film/substrate interface, which is reported to be related to edge atom state [50,51] and interface binding [19]. Although B solubilities in Ni (~0.3 at.% at 1085 °C [52]) and Co (~0.3 at.% at 1110 °C [53]) are considerably large, N solubilities in these metals are reported to be extremely low (in Ni, ~0.004 at.% at 1550 °C [54]; in Co, ~0.017 at.% at 1600 °C [55]). Thus, those adlayers should be most probably formed by intercalation, instead of precipitation.

Since adlayers are formed from below, the growth of adlayers can be influenced mainly by two processes: one is the nucleation process; the other is the intercalation process. The growth of adlayers requires both a nucleation site to start the growth and a path for source supply in the interface. We first discuss how the nucleation process influences the
adlayer growth. The detailed structures of adlayers are shown in Fig. 2. Two kinds of adlayers are observed. Fig. 2(i) shows the configuration of “prism-adlayers” with a preferential nucleation site in the center, and Fig. 2(ii) shows the configuration of “ribbon-adlayers” with preferential nucleation sites along the edges. The SEM images shown in Fig. 2a/b are taken on as grown samples, with brighter area corresponding to thicker area. Fig. 2e/d show optical microscope images of the transferred adlayers on SiO2/Si, indicating clear thickness distribution. On “prism-adlayers”, a defective nucleation site is always found in the center, as resolved by the AFM image in Fig. 2e. The line profile in Fig. 2g, which was taken across the adlayer further shows the protrusion in the center and h-BN steps around it. The narrow peaks are caused by wrinkles on h-BN. On the other hand, no discernable nucleation site is observed on “ribbon-adlayers”, as shown in the AFM image of Fig. 2f. The line profile in Fig. 2h shows the decreased thickness towards the center of the flake (right hand side).

The “prism-adlayers” may originate from crystallographic defects and impurities on substrate surface, where the high surface energy is beneficial to h-BN nucleation process [14]. Multilayer seeds might form at the beginning of the growth, however, the upper layers with outer edges receive more resources than inner layers, which results in different lateral growth speeds, leading to the formation of prism-like structures. The inner layer will stop growth once it is too far away from the outmost edges, or the outmost edges merge with other flakes, which stops the intercalation process. On the other hand, the “ribbon-adlayers” are likely formed during the h-BN flake expansion. The specific reason of this kind of adlayer growth is not clear, nevertheless, it may be related to the changes of atom arrangement on substrate surface. As h-BN edges reach those regions with different atom arrangement during growth, mismatch is formed due to the loss of epitaxial relationship between h-BN film and substrate. The mismatch results in weaker binding areas where more intercalation happens [19]. B and N sources intercalate and accumulate in the confined interface, and subsequently nucleate to form atom rings and clusters, which later grow into extra layers. Similar nucleation process was reported in graphene growth [56].
As seen from Fig. 1, even though these two kinds of adlayers coexist on every sample with adlayers, “ribbon-adlayers” are dominant on Co substrate, while “prism-adlayers” dominate on Ni substrate. These adlayers can be clearly identified by using ImageJ software, and their statistical results are summarized and shown in Fig. S2 (Supplementary Information). Co and Ni are quite similar in terms of their catalytic effect [57] and B/N solubilities. However, their surface morphology is quite different after heat treatment (Fig. S3). More crystallographic defects (twin boundaries, terraces, large steps, etc.) form on Co surface rather than on Ni surface, which may be related to the special phase transformation of Co between HCP and FCC phases [58]. The Co surface also has worse facet uniformity, as it consists of various lattice planes. Besides FCC (111), (200), (220), there are also HCP planes. On the other hand, Ni surface is dominated by FCC (100) plane. This observation further confirms that “prism-adlayers” are related to crystallographic defects and impurities. Meanwhile, more adlayers are formed on polycrystalline Co substrate than on polycrystalline Ni substrate at the same growth condition, which may be due to the formation of more multilayer seeds on Co.

Fig. 3 shows SEM images of a sample, which was grown using the same growth conditions as the sample shown in Fig. 1k or 1o, further revealing different adlayer growth scenarios. As shown in Fig. 3a, more adlayers appear on polycrystalline region (upper right) than on single crystalline region (lower left), which illustrates the strong influence of crystallographic defects in adlayer growth. Fig. 3 b/c are adlayers grown around dents and grooves (grain boundaries) on substrate surface. Except for the adlayers directly caused by crystallographic defects, some adlayers are formed due to the intercalation near edges, such as line defects (Fig. 3d) and edges of flakes (Fig. 3e). The existence of small amount of adlayers on single crystalline region is mainly caused by impurities, as shown in Fig. 3f.

Next, we discuss how hydrogen and interstitial carbon influence the intercalation process. During the growth, N precursor is provided from N2+ and N+ ions have kinetic energy ranging from 6 eV to 30 eV due to the so-called Sheath potential, which is resulted from ambipolar diffusion along island edges and adatom surface diffusion [60]. When surface diffusion is much faster, edge atoms cannot relax efficiently to find energetically more favorable locations along island edges before additional adatoms migrate by surface diffusion to join them, resulting in dendritic edges. However, our time dependent growth shows that isolated dendritic gaps are in well-defined triangle shape with straight edges (Fig. S4a), which indicates fast edge atom diffusion rate. Only when those edges of adjacent gaps approach closer, twig-like gaps are formed. The resistance to merge may be related to the bombardment effect of N2 plasma. According to ECR plasma studies, N2+ and N+ ions have kinetic energy ranging from 6 eV to 30 eV due to the so-called Sheath potential, which is resulted from ambipolar diffusion of ions and electrons [61]. Ions with this kinetic energy have been used for poly-Si etching, and are able to damage GaN epitayers [62]. The bombardment effect of N2 ECR plasma on h-BN was directly proved by comparing the h-BN films grown on both front and back sides of a substrate followed by the plasma exposure as detailed in Fig. S5a-f in the Supplementary Information.

When 2-sccm ammonia was introduced in addition to 10-sccm N2 plasma, the gaps begin to sew up (Fig. 1b, e). Since the growth pressure (2 × 10^{-3} Torr) did not change much, the alleviation of the plasma’s bombardment effect due to mean free path change can be ignored. Instead, the “sewing effect” may be caused by hydrogen. Hydrogen atoms are known to have strong influence in graphene growth. For example, the graphene crystal patterns can be tailored by adjusting CH4/H2 ratio [60]; the formation of single and bilayer graphene is closely related to the presence of hydrogen [51]; super large single-crystalline graphene domain can be achieved by removing hydrogen dehydrogenation on hot metal surface, which results in NH2, NH radicals, and N and H atoms [59]. By using different mixture of N2 plasma and ammonia, we observed the h-BN morphology transformation from smooth sub-monolayer to non-uniform multilayer growth. As shown in Fig. 1(i) and (ii), when pure N2 plasma was used as N source (Fig. 1a/d), as grown h-BN film is uniform without any adlayers. However, dendritic gaps (1 μm to 8 μm wide) are formed between adjacent h-BN flakes all over the surface, which do not merge even after the growth time reaches 4.5 h for the samples grown on Co (Fig. S4). Dendritic edges have been widely reported in graphene growth, which is believed to originate from the competition between adatom diffusion along island edges and adatom surface diffusion [60]. When surface diffusion is much faster, edge atoms cannot relax efficiently to find energetically more favorable locations along island edges before additional adatoms migrate by surface diffusion to join them, resulting in dendritic edges. However, our time dependent growth shows that isolated flakes are in well-defined triangle shape with straight edges (Fig. S4a), which indicates fast edge atom diffusion rate. Only when those edges of adjacent flakes approach closer, twig-like gaps are formed. The resistance to merge may be related to the bombardment effect of N2 plasma. According to ECR plasma studies, N2+ and N+ ions have kinetic energy ranging from 6 eV to 30 eV due to the so-called Sheath potential, which is resulted from ambipolar diffusion of ions and electrons [61]. Ions with this kinetic energy have been used for poly-Si etching, and are able to damage GaN epitayer [62]. The bombardment effect of N2 ECR plasma on h-BN was directly proved by comparing the h-BN films grown on both front and back sides of a substrate followed by the plasma exposure as detailed in Fig. S5a-f in the Supplementary Information.
atoms on growing edges [63]. Similar to graphene growth, hydrogen atom can also terminate h-BN edge [64,65]. The presence of hydrogen on h-BN edges can be inferred from the irregular shape of h-BN domains formed when using pure ammonia as N precursor (Fig. S4d). Hydrogen termination results in lower edge atom diffusion rate, thus edge atoms cannot relax sufficiently to find energetically more favorable locations along island edges before additional B/N atoms migrate by surface diffusion to join them. In the absence of such relaxation, irregular edges are formed [66,67]. The presence of hydrogen atoms on growing edges could have alleviated the plasma’s bombardment effect, so as to make the edges easier to merge. On the other hand, the presence of hydrogen on growing edges may also be responsible for the lower lateral growth rate when using ammonia, as shown in the time-dependent growth results in Fig. S4. For the same growth time, using ammonia results in lower coverage than using N2 plasma. Additional activation energies are needed to release hydrogen species from hydrogen terminated edge atoms and/or hydrogen-contained incoming precursors to form h-BN [63], resulting in lower growth rate.

Adlayers were formed when more ammonia was introduced (Fig. 1c/1f). As discussed above, these adlayers should be formed from below by intercalation. In graphene growth, people had reported that hydrogen atoms terminating the growing edges could result in the
intercalation growth of adlayers [50,51]. Here we propose a similar intercalation model, in which the density of B/N atoms in the interface \(n_{\text{ad}}\) is proportional to the penetration probability \(j_{\text{une}}\) (possibility of atoms penetrate through the edge) and the density of B/N atoms outside the edge \(n_{\text{ad}}\). \(j_{\text{une}}\) is a factor related to the activeness of h-BN edges, which is determined by the activation energy barrier for h-BN growth. The more active the edges are, the more likely that upcoming atoms get caught and contribute to the lateral growth, thus the less likely these atoms penetrate into the interface. \(n_{\text{ad}}\) is related to source flux rate and adsorption coefficient on catalyst substrate. Larger source flux rate and adsorption coefficient would result in larger \(n_{\text{ad}}\). By passivating the edges with hydrogen, we actually increase the \(j_{\text{une}}\), thus more B/N atoms end up in the interface, and in turn, adlayers grow. In a hydrogen-free environment (N\(_2\) plasma as N source), the growing edges with unpaired dangling bonds are very active and readily catch upcoming B and N atoms, thus the \(j_{\text{une}}\) is small, leading to no adlayer growth. It is worth noting that potential use of the mixture of hydrogen and nitrogen gas as N source cannot replicate the role of ammonia because pure hydrogen gas strongly etches h-BN (Fig. S5 g/h).

Interstitial carbon embedded in the substrate affects the adlayer growth as well. The amount of interstitial carbon was controlled by the introduction time of C\(_2\)H\(_2\) treatment of hot substrates prior to h-BN growth, and longer carburization time led to higher density of interstitial carbon in the substrate, as revealed by XPS studies. Fig. 4 shows XPS spectra of C\(_1\)s on samples with different carburization time as shown in Fig. 1(iii). As-measured XPS data was first deconvoluted, and fitted with Shirley background and GL(30) line shape. The spectrum was then calibrated by shifting C–C main peak to 284.8 eV. As shown in Fig. 4a, the C\(_1\)s signal was dominated by adventitious carbon before sputtering, with C–C/C–H peak at 284.8 eV, C–O/H–C/O–C at 286.3 eV, and O–C=O at 285.5 eV, respectively. Even with different carburization time, no discernable differences were observed before sputtering. Fig. 4b shows the C\(_1\)s peak after 60-s Ar\(^+\) ion sputtering. From bottom to up, these are the profiles for 1-min, 2-min, and 3-min carburized samples, respectively. After sputtering, the dissolved interstitial carbon peak at 283.6 eV is resolved [68,69]. The other two small peaks at 284.8 eV and 286.3 eV are assigned to residual adventitious C–C/C–H and C–O/H–C/O–C carbon, respectively. Precipitated carbon onto grain boundaries may also contribute to the peak at 284.8 eV. No sp\(^2\) C–C bond and Ni–C bond signals are detectable within the limit of the XPS system, suggesting no graphitic or graphene structures have been formed. Based on the depth resolved XPS data, we calculated the interstitial carbon concentration. It was found that the atomic percentage for 1-min, 2-min, and 3-min carburization is 0.37 at.%, 0.49 at.%, and 0.64 at.%, respectively. However, since the depth resolved XPS data were obtained at room temperature, the real carbon concentration at the growth temperature may be different. According to the first-principles calculation, the subsurface carbon concentration in Ni can be as high as 50 at.% before carbon atoms diffuse deep into the bulk [70], thus the carbon concentration at subsurface during growth should be proportional to carburization time.

As shown in Fig. 1(iii), increasing the carburization time suppresses the growth of adlayers. Our previous work indicates that interstitial carbon atoms at the subsurface octahedral sites can enhance the absorption of B and N atoms on Co and Ni substrates and increase the h-BN growth speed [37]. The increased growth speed can be caused by increased source supply \(n_{\text{ad}}\), since the absorption of B and N atoms on the surface is enhanced. It may also be caused by improved catalytic activities of the transition metals under the interstitial carbon incorporation, which results in smaller activation energy barrier for the nucleation and growth of h-BN. In other words, h-BN edges are more active in catching upcoming B and N atoms and the growth becomes faster. To elucidate how interstitial carbon exactly works, we compare it to the source flux dependent growth (Fig. 1(iv) and 1(v)), where only \(n_{\text{ad}}\) is changed. As stated earlier, the increase of source flux results in the increase of growth rate. However, the amount of adlayers is also increased. This can be understood based on the intercalation model as discussed above. Since \(j_{\text{une}}\) remains unchanged, the increase in \(n_{\text{ad}}\) results in more B and N atoms in the interface, thus more growth of adlayers. On the other hand, the increase of the amount of interstitial carbon also results in larger growth speed, however, the amount of adlayers decreases (Fig. S1). This suggests that interstitial carbon does not increase h-BN growth rate simply by increasing the absorption of B/N on the surface (increase of \(n_{\text{ad}}\)). It improves the catalytic effect of the substrate as well. With improved catalytic effect, not only adsorption and diffusion of B and N atoms enhance [37], but also the h-BN edges are much more ready to catch upcoming B/N atoms, therefore \(j_{\text{une}}\) decreases, and fewer B/N atoms end up in the interface.

So far, we have discussed the factors influencing the growth of h-BN adlayer, including substrate crystallographic defects, hydrogen, and interstitial carbon. While substrate crystallographic defects have strong influence on the nucleation process, hydrogen and interstitial carbon can control the growth of adlayers by engineering the activeness of h-BN edges. Activated edges diminish intercalation growth by decreasing the penetration probability of B/N atoms, while passivated edges promote intercalation growth by increasing the penetration probability of B/N atoms. Considering all these factors, we made an attempt to achieve precise control of the number of layers. First, uniform single-layer film can be obtained by eliminating intercalation growth. To achieve this, single crystalline Ni substrate was chosen in order to diminish the formation of multilayer seeds. A mixture of 10-sccm N\(_2\) plasma and 2-sccm ammonia was used as nitrogen source, in which the 2-sccm ammonia help alleviate plasma bombardment effect and sew the gaps between flakes. 4-min C\(_2\)H\(_2\) carburization was used to compensate the effect from the presence of H and keep the h-BN edge active to B and N. The temperature of B\(_2\)O\(_3\) effusion cell and substrate were kept at 1150°C and 900°C, respectively. The growth time was 6 h. Fig. 5a shows an SEM image of single-layer film taken at the center of as grown sample, with the inset showing the film edge area. No large adlayers were observed over the 1 cm\(^2\) surface. Corresponding RHEED images are shown in Fig. S6, revealing the characteristic patterns of both the substrate and h-BN film. Fig. 5b shows an optical microscopy image of the transferred h-BN film on SiO\(_2\)/Si substrate. The film was transferred by modified RCA process [71], followed by an annealing at 400°C in oxygen environment for 3 h to remove water and PMMA residue [72,73]. The transferred film shows uniform contrast in large area despite of some small contaminations (black and yellow dots), indicating high film quality. The thickness of the single-layer h-BN film was confirmed by TEM as shown in Fig. 5c. Inserted SAED pattern shows bright spots in hexagonal arrangement, indicating the hexagonal arrangement of B and N atoms. The rings in SAED pattern are formed due to the diffraction of electrons by amorphous highly carbon thin film on TEM grids. The AFM image in Fig. 5d was taken on transferred film shown in Fig. 5b. Larger thickness (0.7 nm) compared to theoretical value (0.33 nm) of single-layer film may be caused by different atomic forces between tip/h-BN and tip/SiO\(_2\), weak binding between h-BN film and SiO\(_2\)/Si substrate, as well as water and gases intercalated in the interface [14]. Raman mapping was performed on the transferred sample, and the result is shown in Fig. 5e. The green contrast is corresponding to E\(_{2g}\) peak of h-BN. The slight nonuniformity in Raman intensity may be caused by the corrugation of h-BN film formed during transfer process. Fig. 5f shows Raman spectra extracted from nine different spots of Raman map, and all the peaks are located around 1369.5 cm\(^{-1}\), which implies single-layer h-BN [74]. Fig. 5 g/h show XPS spectra of B\(_1\)s and N\(_1\)s signals of as grown single layer h-BN film, respectively. As-measured XPS data was first deconvoluted, and fitted with Shirley background and GL(0) line shape. These spectra were then calibrated by shifting C–C main peak to 284.8 eV. The main peaks of B and N are measured to be 190.1 eV and 397.6 eV, respectively, an indication of sp\(^2\) bonds, which is consistent with other reports [15,16]. The smaller peak next to the main peak at higher position, 190.7 (398.2) eV, is assigned to cubic-like sp\(^3\) bond [75,76]. The negligible
small peak at the highest position, 191.6 (399.5) eV, is assigned to oxygen related defects [77]. The boron to nitrogen ratio calculated based on XPS data is around 0.96. SEM images of growth time dependent single-layer films are shown in Fig. S7. As the growth time increases, the coverage of the h-BN single-layer film increases.

The obstacle towards large-area bilayer and multilayer growth is the differentiated growth speeds between inner and outer layers, which is caused by insufficient source supply in the interface. In other words, the h-BN growth speed lies in a source limited region. On the other hand, if sufficient B and N atoms are supplied, h-BN growth may be transitioned into a self-limited region, where the growth speed is not limited by source supply, instead, it is limited by the bond formation rate. Then the growth speed of inner edge may have a chance to catch up outer edge so that large-area bilayer or multilayer films can be achieved. Towards this end, we grew a sample with an attempt of increasing B supply. Prior to introduction of both N and B sources, we deposited B only for 30 mins with B2O3 cell kept at 1175 °C. The pre-deposition of B allows the saturation of B in the substrate prior to growth; it also leads to the existence of abundant B atoms on the surface, in particular around surface defects or other imperfect or irregular sites. Once N atoms are introduced, the multilayer seed nucleation may have higher chances to happen. In other words, if the growth started without B pre-deposition, portion of B atoms would diffuse into the substrate at the early growth stage due to its solubility, then less B atoms would meet N atoms to nucleate and grow into multilayer seeds at the growth stage. The result of comparing h-BN growth with and without pre-deposition of B is shown in Fig. S8. With pre-deposition, the adlayer size is significantly increased, and the second layer can reach up to 250 μm. However, improved strategy to provide sufficient B and N sources to the interface between the outmost layer and the substrate is needed to achieve wafer-scale uniform multilayer growth, which is in progress.

4. Conclusion

We have carried out a study of intercalation growth of h-BN adlayers. By comparing the growth on different catalyst substrates, we
showed that crystallographic defects on catalyst substrates play an important role in adlayer nucleation process. By using N plasma, amonia, and their mixtures as nitrogen sources, we found that hydrogen played multiple roles in h-BN growth. On one hand, hydrogen terminating growing edges can provide protection against plasma’s bombardment effect, making 2D h-BN flakes easier to merge. On the other hand, it passivates h-BN edges, which results in slower lateral growth rate and more intercalation growth of 3D adlayers. We also further revealed an important role played by interstitial carbon in the transition rate and more intercalation growth of 3D adlayers. We also further showed that crystallographic defects on catalyst substrates play an energy frontier research center funded by the U.S. Department of energy.

References

Y. He, et al.

Applied Surface Science 498 (2019) 143851